US009304831B2

a2 United States Patent 10) Patent No.: US 9,304,831 B2
Messmer 45) Date of Patent: Apr. 5, 2016
(54) SCHEDULING EXECUTION CONTEXTS 6,795,901 Bl1* 9/2004 Floreketal. 711/152
WITH CRITICAL REGIONS 6,904,595 B2 6/2005 Alford et al.
6,934,950 B1* 82005 Tueletal.cccoeeuenee. 718/102
A A 7,117,481 B1* 10/2006 Agesenetal. .. . 717/120
(75) Inventor: William R. Messmer, Woodinville, WA 7.159.220 B2* 1/2007 chh 718/104
(Us) 7,178,062 B1* 22007 Dice ... o 714/38.13
7,296,271 B1 11/2007 Chalmer et al.
(73) Assignee: Microsoft Technology Licensing, LLC, 2008/0077382 A1 3/2008 Strehl
Redmond, WA (US) OTHER PUBLICATIONS
(*) Notice: SUbjeCt. to any disclaimer, > the term of this Boussinot, Frederic, “FairThreads: Mixing Cooperative and Preemp-
patent 1s exlzertded or a(lj(gusted under 35 tive Threads in C”, Retrieved at <<fip://ftp.inria.fi/INRIA/publica-
U.S.C. 154(b) by 1396 days. tion/publi-ps-gzZ/RR/RR-5039.ps.gz>>, Published by INRIA, Dec.
. 2003, pp. 31.
(21) Appl. No.: 12/240,319 Layland-Thorvald, et al., “Real-Time Operating Systems, continued
. & basic Scheduling Theory”, Retrieved at <<http://www.md kth.se/
(22) Filed: Sep. 29,2008 RTC/RTCC/Material01/1ectures/Day-three-RTOS.pdf>>, Feb. 13,
. s 2002, Slides 1-71.
(65) Prior Publication Data Dabrowski et al., “Cooperative Threads and Preemptive Computa-
US 2010/0083258 Al Apr. 1,2010 tions”, Retrieved at <<http://hal.archives-ouvertes.fr/docs/00/07/87/
80/PDF/article.pdf>>, pp. 15.
(51) Int.ClL .o .
GOGF 9/455 (2006.01) cited by examiner
gzgi zgg 888288 Primary Examiner — Corey S Faherty
GOGF 9/50 (200601) (74) Allorney, Ag@l’l[, or Firm —Kevin SulliVan; Aaron
(52) US.CL Hoff; Micky Minhas
CPC GO6F 9/526 (2013.01); GO6F 9/5077
() ooy 67 ABSTRACT
(58) Field of Classification Search A scheduler in a process of a computer system detects an
USPC e 718/1, 102 execution context that blocked from outside of the scheduler
See application file for complete search history. while in a critical region. The scheduler ensures that the
execution context resumes execution on the processing
(56) References Cited resource of the scheduler on which the execution context

U.S. PATENT DOCUMENTS

5,414,848 A 5/1995 Sandage et al.

5,911,065 A 6/1999 Williams et al.

6,052,707 A 4/2000 D’Souza

6,167,423 A * 12/2000 Chopraetal. 718/100
6,625,635 Bl 9/2003 Elnozahy

CRITICAL
REGION TO BE
ENTERED?

YE

P AVAILABLE FOI
CRITICAL REGION?,

YES

SET CRITICAL REGION

INDICATCR

‘62
s
R NO
‘a4

ENTER CRITICAL REGION AND|

blocked when the execution context becomes unblocked. The
scheduler also prevents another execution context from enter-
ing a critical region on the processing resource prior to the
blocked execution context becoming unblocked and exiting
the critical region.

20 Claims, 4 Drawing Sheets

PREVENT CRITICAL REGION
FROM EXECUTING ON THE
VIRTUAL PROCESSOR

66

)

EXECUTION
CONTEXT
UNBLOCKED?,

NO NO

CRITICAL
REGION
EXITED?

SWITCH TO EXECUTION
CONTEXT ON THE SAME
VIRTUAL PROCESSCR
72

YES

CLEAR CRITICAL REGION
INDICATOR

Y74

U.S. Patent Apr. 5, 2016 Sheet 1 of 4 US 9,304,831 B2
12,
22, PROCESS
SCHEDULER
|
]
40
i 42 A5
38 A
36(1) - 36(2) - 36(N) -
34(1) —| 34(2) —| 34Ny —|
VP VP VP
32(1) 32(2) 32(N) /
RESOURCE MANAGEMENT LAYER
14/
HARDWARE HARDWARE HARDWARE
10 A THREAD THREAD THREAD
16(1) / 16(2) / 16(M) /

Fig. 1

US 9,304,831 B2

U.S. Patent Apr. 5, 2016 Sheet 2 of 4
N 52A
SOA CONTEXT A EnterCriticalRegion
34A VP E \\ 60
|| INnDicaTOR | L ™.} ExitCriticalRegion
Csga TR 54A
CRITICAL
REGION |||
INDICATOR | [~ 96A
VP
/
/]
32 Fig. 2A
CONTEXT B CONTEXT A
50B - 50A -
34B 34A
VP VP
_| | INDICATOR | | 58B INDICATOR [58A
CRITICAL CRITICAL
REGION ||| REGION ||
INDICATOR ~ 568 INDICATOR ~ 56A
VP
/
32/ .
Fig. 2B
CONTEXT A CONTEXT B
50A - 50B -
34B -
4A
3 VP VP
| | INDICATOR [|5 58A INDICATOR | [~ 98B
CRITICAL CRITICAL
REGION || sga REGION ||
INDICATOR INDICATOR — 568B
VP
32/

Fig. 2C

U.S. Patent Apr. 5,2016

CRITICAL
REGION TO BE
ENTERED?

' 62
YES

Sheet 3 of 4

US 9,304,831 B2

P AVAILABLE FOR
CRITICAL REGION?

NO»

PREVENT CRITICAL REGION
FROM EXECUTING ON THE
VIRTUAL PROCESSOR

YES

ENTER CRITICAL REGION AND
SET CRITICAL REGION
INDICATOR

' 68

\

' 66

BLOCK
FROM OUTSIDE THE
SCHEDULER?

YES»

BLOCK EXECUTION CONTEXT
AND STORE VP INDICATOR

' 70

NO

NO———»

i

176

\

EXECUTION
CONTEXT
UNBLOCKED?

' 78

YES
y

CRITICAL
REGION
EXITED?

SWITCH TO EXECUTION
CONTEXT ON THE SAME
VIRTUAL PROCESSOR

YES
y

CLEAR CRITICAL REGION
INDICATOR

\74

Fig. 3

\

' 80

U.S. Patent Apr. 5, 2016 Sheet 4 of 4 US 9,304,831 B2

SCHEDULE GROUP
92 RUNNABLES REALIZED TASK 93
COLLECTION COLLECTION
94
¥ 96
WORK - - |
COLLECTION WORKSTEALING
L QUEUE
98
90
Fig. 4
RML APPLICATIONS
24 124
HARDWARE RUNTIME
THREADS 0S PLATFORM
16(1)-16(M) 120 122
PROCESSOR(S) MEMORY
102 104
114
(')'I'JPTlIJDL/T DISPLAY PERIPHERAL NETWORK
DEVICE(S) DEVICE(S) DEVICE(S) DEVICE(S)
106 108 110 112

L Fig. 5

US 9,304,831 B2

1
SCHEDULING EXECUTION CONTEXTS
WITH CRITICAL REGIONS

BACKGROUND

Processes executed in a computer system may include
execution context schedulers that schedule tasks of processes
for execution in the computer system. A scheduler may create
execution contexts (e.g., threads, fibers, or child processes) in
order to execute tasks. During execution, the scheduler main-
tains control over these execution contexts and maintains
control of the processing resources allocated to the scheduler.

Attimes, an execution context may be blocked by an entity
other than the scheduler while executing on a processing
resource of the scheduler. If the scheduler is not notified of the
block, the processing resource that was executing the block
execution context may become idle. In addition, the scheduler
may undesirably attempt to schedule the execution context on
a different processing resource when the execution context
becomes unblocked.

SUMMARY

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

A scheduler in a process of a computer system detects an
execution context that blocked from outside of the scheduler
while in a critical region. The scheduler ensures that the
execution context resumes execution on the processing
resource of the scheduler on which the execution context
blocked when the execution context becomes unblocked. The
scheduler also prevents another execution context from enter-
ing a critical region on the processing resource prior to the
blocked execution context becoming unblocked and exiting
the critical region.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of embodiments and are incorporated
in and constitute a part of this specification. The drawings
illustrate embodiments and together with the description
serve to explain principles of embodiments. Other embodi-
ments and many of the intended advantages of embodiments
will be readily appreciated as they become better understood
by reference to the following detailed description. The ele-
ments of the drawings are not necessarily to scale relative to
each other. Like reference numerals designate corresponding
similar parts.

FIG. 1 is a block diagram illustrating an embodiment of a
scheduler configured to schedule execution contexts for
execution by processing resources.

FIGS.2A-2C are block diagrams illustrating embodiments
of a processing resource that executes execution contexts.

FIG. 3 is a flow chart illustrating an embodiment of a
method for executing an execution context with a critical
region.

FIG. 4 is a block diagram illustrating an embodiment of a
scheduling group for use in a scheduler.

FIG. 5 is a block diagram illustrating an embodiment of a
computer system configured to implement a runtime environ-

10

15

20

25

30

35

40

45

50

55

60

65

2

ment including a scheduler configured to schedule execution
contexts for execution by processing resources.

DETAILED DESCRIPTION

Inthe following Detailed Description, reference is made to
the accompanying drawings, which form a part hereof, and in
which is shown, by way of illustration, specific embodiments
in which the invention may be practiced. In this regard, direc-
tional terminology, such as “top,” “bottom,” “front,” “back,”
“leading,” “trailing,” etc., is used with reference to the orien-
tation of the Figure(s) being described. Because components
of embodiments can be positioned in a number of different
orientations, the directional terminology is used for purposes
of'illustration and is in no way limiting. It is to be understood
that other embodiments may be utilized and structural or
logical changes may be made without departing from the
scope of the present invention. The following detailed
description, therefore, is not to be taken in a limiting sense,
and the scope of the present invention is defined by the
appended claims.

It is to be understood that the features of the various exem-
plary embodiments described herein may be combined with
each other, unless specifically noted otherwise.

FIG. 1 is a block diagram illustrating an embodiment of a
scheduler 22 in a process 12 of a runtime environment 10.
Scheduler 22 is configured to schedule execution contexts for
execution by processing resources.

Runtime environment 10 represents a runtime mode of
operation in a computer system, such as a computer system
100 shown in FIG. 5 and described in additional detail below,
where the computer system is executing instructions. The
computer system generates runtime environment 10 from a
runtime platform such as a runtime platform 122 shown in
FIG. 5 and described in additional detail below.

Runtime environment 10 includes an least one invoked
process 12, a resource management layer 14, and a set of
hardware threads 16(1)-16(M), where M is an integer that is
greater than or equal to one and denotes the Mth hardware
thread 16(M). Runtime environment 10 allows tasks from
process 12 to be executed, along with tasks from any other
processes that co-exist with process 12 (not shown), using an
operating system (OS) such as an OS 120 shown in FIG. 5 and
described in additional detail below, resource management
layer 14, and hardware threads 16(1)-16(M). Runtime envi-
ronment 10 operates in conjunction with the OS and/or
resource management layer 14 to allow process 12 to obtain
processor and other resources of the computer system (e.g.,
hardware threads 16(1)-16(M)).

Runtime environment 10 includes a scheduler function that
generates scheduler 22. In one embodiment, the scheduler
function is implemented as a scheduler application program-
ming interface (API). In other embodiments, the scheduler
function may be implemented using other suitable program-
ming constructs. When invoked, the scheduler function cre-
ates scheduler 22 in process 12 where scheduler 22 operates
to schedule tasks of process 12 for execution by one or more
hardware threads 16(1)-16(M). Runtime environment 10 may
exploit fine grained concurrency that application or library
developers express in their programs (e.g., process 12) using
accompanying tools that are aware of the facilities that the
scheduler function provides.

Process 12 includes an allocation of processing and other
resources that hosts one or more execution contexts (viz.,
threads). Process 12 obtains access to the processing and
other resources in the computer system (e.g., hardware
threads 16(1)-16(M)) from the OS and/or resource manage-

US 9,304,831 B2

3

ment layer 14. Process 12 causes tasks to be executed using
the processing and other resources.

Process 12 generates work in tasks of variable length where
each task is associated with an execution context in scheduler
22. Each task includes a sequence of instructions that perform
a unit of work when executed by the computer system. Each
execution context forms a thread that executes associated
tasks on allocated processing resources. Each execution con-
text includes program state and machine state information.
Execution contexts may terminate when there are no more
tasks left to execute. For each task, runtime environment 10
and/or process 12 either assign the task to scheduler 22 to be
scheduled for execution or otherwise cause the task to be
executed without using scheduler 22.

Process 12 may be configured to operate in a computer
system based on any suitable execution model, such as a stack
model or an interpreter model, and may represent any suitable
type of code, such as an application, a library function, or an
operating system service. Process 12 has a program state and
machine state associated with a set of allocated resources that
include a defined memory address space. Process 12 executes
autonomously or substantially autonomously from any co-
existing processes in runtime environment 10. Accordingly,
process 12 does not adversely alter the program state of
co-existing processes or the machine state of any resources
allocated to co-existing processes. Similarly, co-existing pro-
cesses do not adversely alter the program state of process 12
or the machine state of any resources allocated to process 12.

Resource management layer 14 allocates processing
resources to process 12 by assigning one or more hardware
threads 16 to process 12. Resource management layer 14
exists separately from the OS in the embodiment of FIG. 1. In
other embodiments, resource management layer 14 or some
or all of the functions thereof may be included in the OS.

Hardware threads 16 reside in execution cores of a set or
one or more processor packages (e.g., processor packages
102 shown in FIG. 5 and described in additional detail below)
of the computer system. Each hardware thread 16 is config-
ured to execute instructions independently or substantially
independently from the other execution cores and includes a
machine state. Hardware threads 16 may be included in a
single processor package or may be distributed across mul-
tiple processor packages. Each execution core in a processor
package may include one or more hardware threads 16.

Process 12 implicitly or explicitly causes scheduler 22 to
be created via the scheduler function provided by runtime
environment 10. Scheduler instance 22 may be implicitly
created when process 12 uses APIs available in the computer
system or programming language features. In response to the
APl or programming language features, runtime environment
10 creates scheduler 22 with a default policy. To explicitly
create a scheduler 22, process 12 may invoke the scheduler
function provided by runtime environment 10 and specify one
or more policies for scheduler 22.

Scheduler 22 interacts with resource management layer 14
to negotiate processing and other resources of the computer
system in a manner that is transparent to process 12. Resource
management layer 14 allocates hardware threads 16 to sched-
uler 22 based on supply and demand and any policies of
scheduler 22.

In the embodiment shown in FIG. 1, scheduler 22 manages
the processing resources by creating virtual processors 32
that form an abstraction of underlying hardware threads 16.
Scheduler 22 includes a set of virtual processors 32(1)-32(N)
where N is an integer greater than or equal to one and denotes
the Nth virtual processor 32(N). Scheduler 22 multiplexes
virtual processors 32 onto hardware threads 16 by mapping

10

15

20

25

30

35

40

45

50

55

60

65

4

each virtual processor 32 to a hardware thread 16. Scheduler
22 may map more than one virtual processor 32 onto a par-
ticular hardware thread 16 but maps only one hardware thread
16 to each virtual processor 32. In other embodiments, sched-
uler 22 manages processing resources in other suitable ways
to cause instructions of process 12 to be executed by hardware
threads 16.

The set of execution contexts in scheduler 22 includes a set
of'execution contexts 34(1)-34(N) with respective, associated
tasks 36(1)-36(N) that are being executed by respective vir-
tual processors 32(1)-32(N) and, at any point during the
execution of process 12, a set of zero or more execution
contexts 38. Each execution context 34 and 38 includes state
information that indicates whether an execution context 34 or
38 is executing, runnable (e.g., in response to becoming
unblocked or added to scheduler 22), or blocked. Execution
contexts 34 that are executing have been attached to a virtual
processor 32 and are currently executing. Execution contexts
38 that are runnable include an associated task 40 and are
ready to be executed by an available virtual processor 32.
Execution contexts 38 that are blocked also include an asso-
ciated task 40 and are waiting for data, a message, or an event
that is being generated by another execution context 34 or will
be generated by another execution context 38.

Each execution context 34 executing on a virtual processor
32 may generate, in the course of its execution, additional
tasks 42, which are organized in any suitable way (e.g., added
to work queues (not shown in FIG. 1)). Work may be created
by using either application programming interfaces (APIs)
provided by runtime environment 10 or programming lan-
guage features and corresponding tools in one embodiment.
When processing resources are available to scheduler 22,
tasks are assigned to execution contexts 34 or 38 that execute
them to completion on virtual processors 32 before picking
up new tasks. An execution context 34 executing on a virtual
processor 32 may also unblock other execution contexts 38 by
generating data, a message, or an event that will be used by
other execution contexts 38.

Each task in scheduler 22 may be realized (e.g., realized
tasks 36 and 40), which indicates that an execution context 34
or 38 has been or will be attached to the task and the task is
ready to execute. Realized tasks typically include unblocked
execution contexts and scheduled agents. A task that is not
realized is termed unrealized. Unrealized tasks (e.g., tasks 42)
may be created as child tasks generated by the execution of
parent tasks and may be generated by parallel constructs (e.g.,
parallel or parallel for). Scheduler 22 may be organized into a
synchronized collection (e.g., a stack and/or a queue) for
logically independent tasks with execution contexts (i.e.,
realized tasks) along with a list of workstealing queues for
dependent tasks (i.e., unrealized tasks) as illustrated in the
embodiment of FIG. 4 described below.

Prior to executing tasks, scheduler 22 obtains execution
contexts 34 and 38 from runtime environment 10 or the oper-
ating system. Available virtual processors 32 locate and
execute execution contexts 34 to begin executing tasks. Vir-
tual processors 32 become available again in response to an
execution context 34 completing, blocking, or otherwise
being interrupted (e.g., explicit yielding or forced preemp-
tion). When virtual processors 32 become available, the avail-
able virtual processor 32 may switch to a runnable execution
context 38 to execute an associated task 40. The available
virtual processor 32 may also execute a next task 40 or 42 as
a continuation on a current execution context 34 if the previ-
ous task 36 executed by the current execution context 34
completed.

US 9,304,831 B2

5

Scheduler 22 searches for a runnable execution context 38
or an unrealized task 42 to attach to the available virtual
processor 32 for execution in any suitable way. For example,
scheduler 22 may search for a runnable execution context 38
to execute before searching for an unrealized task 42 to
execute. Scheduler 22 continues attaching execution contexts
38 to available virtual processors 32 for execution until all
tasks and execution contexts 38 of scheduler 22 have been
executed.

At times, an execution context 34 may be blocked by an
entity other than scheduler 22. The entity may be the OS or a
runtime platform, such as a runtime platform 122 shown in
FIG. 5 and described in additional detail below, and may
preempt an execution context 34 without notifying scheduler
22. Such preemption may occur, for example, if execution
context 34 performs a memory access that triggers a page
fault in a system where the OS supports demand-paged virtual
memory. If an execution context 34 page faults in such a
system, the OS may preempt and block the execution context
34 and service the page fault as a hard fault that requires
input/output (I/O) to a device, such as a hard disk drive in
memory system.

In some circumstances, an execution context 34 that is
blocked from outside of scheduler 22 may simply be resched-
uled by scheduler 22 when scheduler 22 detects that the
execution context 34 has become unblocked. Scheduler 22
may rescheduled the execution context 34 by attaching the
execution context 34 to a virtual processor 32 that may or may
not be the same virtual processor 32 that was executing the
execution context 34 when the execution context 34 was
blocked.

In other circumstances, however, an execution context 34
that is blocked from outside of scheduler 22 may be accessing
data corresponding to a particular processing resource. For
example, the execution context 34 may hold locks or other
synchronization mechanisms (e.g., scheduling locks) or may
be otherwise accessing data corresponding to a particular
processing resource when the execution context 34 is
blocked. As a result, a subsequent execution context 34 that is
scheduled on the virtual processor 32 that was executing the
blocked execution context 34 may not be able to execute
because ofthe locks held by the blocked execution context 34.
In addition, data accessed by the blocked execution context
34 may have relevance only on the virtual processor 32 that
was executing the blocked execution context 34. As a result,
the execution of the blocked execution context 34 may
become confused if scheduler 22 reschedules the blocked
execution context 34 on another virtual processor 32 when the
execution context 34 becomes unblocked.

Scheduler 22 operates to detect each execution context 34
that is blocked from outside of scheduler 22 while in a critical
region 50 (e.g., critical region 50A in FIG. 2A) of the execu-
tion context 34. A critical region 50 is a set of instructions in
an execution context 34 whose execution becomes contingent
on data corresponding to a particular processing resource,
e.g., a particular virtual processor 32. When scheduler 22
detects such an execution context 34, scheduler 22 ensures
that the execution context 34 resumes execution on the pro-
cessing resource, e.g., the virtual processor 32, on which the
execution context 34 blocked when the execution context 34
becomes unblocked. Scheduler also prevents another execu-
tion context 34 or 38 from entering a critical region 50 on the
same processing resource, ¢.g., the same virtual processor 32,
prior to the blocked execution context 34 becoming
unblocked and exiting the critical region 50.

In one embodiment, a critical region 50 may encompass
code that is responsible for making a scheduling decision for

10

15

20

25

30

35

40

45

50

55

60

65

6

a virtual processor 32. The scheduling decision may involve
identifying an execution context 38 with accompanying task
or a task 42 to be picked up for execution by the virtual
processor 32. In making the scheduling decision, the code in
the critical region 50 may take locks or initiate other synchro-
nization mechanisms that are local to the virtual processor 32.
In other embodiments, a critical region 50 may encompass
code that performs other functions where it is desirable to
ensure that the code, if blocked from outside of scheduler 22,
resumes on the same virtual processor 32.

FIG. 2A is a block diagram illustrating an embodiment of
aprocessing resource, i.e., virtual processor 32, executing an
execution context 34A. Execution context 34A includes a
critical region 50A which, in the embodiment of FIG. 2A, is
defined by programming constructs 52A (EnterCriticalRe-
gion) and 54A (ExitCriticalRegion). In one embodiment,
constructs 52A and 54A are implemented as APIs to func-
tions in resource management layer 14, the OS, and/or the
runtime platform. In other embodiments, constructs 52A and
54A may be implemented using other suitable type and/or
number of explicit programming constructs. In other embodi-
ments, critical regions 50 may be defined implicitly by
including selected types of instructions or other constructs
that, by definition, cause a portion of an execution context 34
to be a critical region 50.

When an execution context 34 enters or otherwise begins
execution of a critical region 50, the execution context 34 sets
a critical region indicator 56 (e.g., critical region indicator
56A in FIG. 2A) corresponding to the execution context 34.
The execution context 34 clears the critical region indicator
56 when the execution context 34 exits or otherwise finishes
execution of the critical region 50. In addition, an execution
context 34 stores a virtual processor indicator 58 (e.g., virtual
processor indicator 58A in FIG. 2A) that identifies the virtual
processor 32 on which the critical region 50 is executing.

In one embodiment, each critical region indicator 56 forms
acounter that is incremented when a corresponding execution
context 34 enters each critical region 50 and is decremented
when the corresponding execution context 34 exits each criti-
cal region 50. In other embodiments, each critical region
indicator 56 forms another suitable indicator that identifies
when a corresponding execution context 34 is executing a
critical region 50 or is blocked during execution of a critical
region 50.

Scheduler 22 identifies each execution context 34 that
blocked in a critical region 50 using a corresponding critical
region indicator 56 and a corresponding virtual processor
indicator 58 as illustrated by the method of FIG. 3. FIG. 3 is
a flow chart illustrating an embodiment of a method for
executing an execution context 34 with a critical region 50.
The method of FIG. 3 will be described with reference to
FIGS. 2A-2C which are block diagrams illustrating embodi-
ments of a processing resource, i.e., virtual processor 32, that
executes execution contexts 34A and 34B.

In FIG. 3, a determination is made as to whether critical
region 50A of execution context 34A is to be entered as
indicated in a block 62. The determination may be made
explicitly in response to executing construct 52A in one
embodiment or implicitly in other embodiments. Critical
region 50A may, for example, include code that allows virtual
processor 32 to make a scheduling decision as to which
execution context 38 or task 42 to execute next.

When an entry to critical region 50A is detected, a deter-
mination is made as to whether the virtual processor 32 that is
executing the execution context 34A is available to execute
the critical region 50A as indicated in a block 64. Scheduler
22 prevents the execution context 34A from entering critical

US 9,304,831 B2

7

region 50A if another execution context 34 or 38 is currently
blocked and the execution context 34 or 38 blocked in a
critical region 50 while executing on the same virtual proces-
sor 32 that is executing execution context 34A. In such a
scenario, the virtual processor 32 is not available to execute
critical region 50A of execution context 34A and scheduler
22 prevents critical region 50A from executing on the virtual
processor 32 as indicated in a block 66. To do so, scheduler 22
may block execution context 34A prior to entering critical
region S0A or may move execution context 34A to another
virtual processor 32 prior to entering critical region 50A.

If no other execution context 34 or 38 is currently blocked
while executing a critical region 50 on the virtual processor
32, execution context 34 A enters critical region 50A and sets
critical region indicator 56A as indicated in block 68. In one
embodiment, execution context 34A increments critical
region indicator 56A to set critical region indicator 56A. In
other embodiments, execution context 34A sets critical
region indicator 56A in other suitable ways.

A determination is made as to whether execution context
34A is blocked from outside of scheduler 22 prior to exiting
critical region 50A as indicated blocks 70 and 72. If execution
context 34A exits critical region 50 A prior to being blocked,
then execution context 34A clears critical region indicator
56 A as indicated in a block 74. The determination that execu-
tion context 34A exited critical region 50A may be made
explicitly in response to executing construct 54A in one
embodiment or implicitly in other embodiments. In one
embodiment, execution context 34A decrements critical
region indicator 56A to clear critical region indicator 56A. In
other embodiments, execution context 34A clears critical
region indicator 56A in other suitable ways.

If execution context 34A is blocked from outside scheduler
22 prior to exiting critical region 50A, then execution context
34A blocks and stores a virtual processor indicator S8A that
identifies the virtual processor 32 on which the critical region
50A is executing as indicated in block 76. Critical region 50A
may invoke a page fault, for example, which causes the OS to
block critical region S0A so that the page fault can be ser-
viced. Execution context 34A remains in the blocked state
until the entity that causes the block provides a signal to
scheduler 22 that indicates that execution context 34A has
become unblocked as indicated in a block 78.

When execution context 34 A becomes unblocked, sched-
uler 22 examines critical region indicator 56 A to detects that
execution context 34A was blocked while in critical region
50A. Scheduler 22 also examines virtual processor indicator
58A to identify the virtual processor 32 that was executing
critical region 50A when execution context 34A was blocked.
Scheduler 22 causes the virtual processor 32 to switch to
execution context 34A to continue executing critical region
50A as indicated in a block 80. When the virtual processor 32
becomes available, scheduler 22 may switch to the unblocked
execution context 34A before switching to other execution
contexts 38 or tasks 42.

Subsequent to execution context 34A blocking and prior to
resuming execution context 34A on the virtual processor 32,
scheduler 22 may cause virtual processor 32 to switch to an
execution context 34B as shown in FIG. 2B and perform the
method of FIG. 3 separately for execution context 34B. In
FIG. 2B, virtual processor 32 is executing execution context
34B while execution context 34A is blocked. If execution
context 34B executes to completion without attempting to
enter a critical region 50B, then virtual processor 32 may
switch to and execute other execution contexts prior to resum-
ing execution context 34A. If, however, execution context
34B attempts to enter a critical region 50B, scheduler 22

10

15

20

25

30

35

40

45

50

55

60

65

8

prevents critical region 50B from executing on the virtual
processor 32, as described above in blocks 64 and 66, because
execution context 34A blocked on the same virtual processor
32 in critical region 50A. Scheduler 22 may block execution
context 34B prior to entering critical region 50B or may move
execution context 34B to another virtual processor 32 prior to
entering critical region 50B.

Once the execution of critical region 50A of execution
context 34 A is resumed, execution context 34 A maintains the
state of critical region indicator 56 A until critical region 50A
is exited. In FIG. 2C, virtual processor 32 resumes the execu-
tion of critical region S0A. Execution context 34B is shown as
blocked in FIG. 2C where the blocking may have occurred
because execution context 34B attempted to enter critical
region 50B. Upon exit of critical region 50A, execution con-
text 34A clears critical region indicator 56A as indicated in
block 74.

With the method of FIG. 3, scheduler 22 allows execution
context 34 A to be resumed subsequent to being preempted by
an entity other than scheduler 22 and without providing any
knowledge of the preemption to execution context 34A.

In embodiments of runtime environment 10 that include
garbage collection, scheduler 22 may operate to suspend
execution contexts 34 and 38 at a safe point in response to
garbage collection being invoked. To get each execution con-
text 34 and 38 to a safe point, scheduler 22 round robins
through execution contexts 34 or 38 to allow each execution
context 34 and 38 to reach a safe point. As shown in the
embodiment of FIG. 3, any execution context 34 or 38 that
attempts to enter a critical region 50 while trying to reach a
safe point ensures that the virtual processor 32 that is execut-
ing the execution context 34 or 38 is available to enter the
critical region 50. If not, then the execution context 34 or 38
cooperatively blocks prior to entering the critical region 50 to
reach the safe point.

The above embodiments may allow a cooperative sched-
uler to operate in a runtime environment where preemptive
blocking of an execution of an execution context of the sched-
uler can occur without knowledge of the scheduler. When
such blocking occurs in a critical region of the execution
context, the scheduler invokes mechanisms that ensure the
desired execution of the execution context when the execu-
tion context is unblocked. In addition, the execution contexts
may be structured to operate with a cooperative scheduler
without regard for the possibility of preemptive blocking.

In one embodiment, process 12 (shown in FIG. 1) orga-
nizes tasks into one or more schedule groups 90 and presents
schedule groups 90 to scheduler 22 as shown in FIG. 4. FIG.
4 is a block diagram illustrating an embodiment of a schedule
group 90 for use in scheduler 22.

Schedule group 90 includes a runnables collection 92, a
realized task collection 93, a work collection 94, and a set of
zero or more workstealing queues 96. Runnables collection
92 contains a list of unblocked execution contexts 38. Sched-
uler 22 adds an execution context 38 to runnables collection
92 when an execution context becomes unblocked. Realized
task collection 93 contains a list of realized tasks 40 (e.g.,
unstarted agents) that may or may not have associated execu-
tion contexts 38. Scheduler 22 adds a realized task to realized
task collection 93 when a new runnable task is presented to
scheduler 22 by process 12. Work collection 94 contains a list
of workstealing queues 96 as indicated by an arrow 98 and
tracks the execution contexts 34 that are executing tasks from
the workstealing queues 96. Each workstealing queue 96
includes one or more unrealized tasks 42.

Using the embodiment of FIG. 4, scheduler 22 may first
search for unblocked execution contexts 38 in the runnables

US 9,304,831 B2

9

collection 92 of each schedule group 90 in scheduler 22.
Scheduler 22 may then search forrealized tasks in the realized
task collection 93 of all schedule groups 90 in scheduler 22
before searching for unrealized tasks in the workstealing
queues 96 of the schedule groups 90.

In one embodiment, a virtual processor 32 that becomes
available may attempt to locate a runnable execution context
38 in the runnables collection 92 in the schedule group 90
from which the available virtual processor 32 most recently
obtained a runnable execution context 38 (i.e., the current
schedule group 90). The available virtual processor 32 may
then attempt to locate a runnable execution context 38 in the
runnables collections 92 in the remaining schedule groups 90
of scheduler 22 in a round-robin or other suitable order. If no
runnable execution context 38 is found, then the available
virtual processor 32 may then attempt to locate an unrealized
task 42 in the workstealing queues 96 of the current schedule
group 90 before searching the workstealing queues 96 in the
remaining schedule groups 90 of scheduler 22 in a round-
robin or other suitable order.

FIG. 5 is a block diagram illustrating an embodiment of
computer system 100 which is configured to implement runt-
ime environment 10 including scheduler 22 where scheduler
22 is configured to schedule execution contexts for execution
by processing resources as described above.

Computer system 100 includes one or more processor
packages 102, a memory system 104, zero or more input/
output devices 106, zero or more display devices 108, zero or
more peripheral devices 110, and zero or more network
devices 112. Processor packages 102, memory system 104,
input/output devices 106, display devices 108, peripheral
devices 110, and network devices 112 communicate using a
set of interconnections 114 that includes any suitable type,
number, and configuration of controllers, buses, interfaces,
and/or other wired or wireless connections.

Computer system 100 represents any suitable processing
device configured for a general purpose or a specific purpose.
Examples of computer system 100 include a server, a per-
sonal computer, a laptop computer, a tablet computer, a per-
sonal digital assistant (PDA), a mobile telephone, and an
audio/video device. The components of computer system 100
(i.e., processor packages 102, memory system 104, input/
output devices 106, display devices 108, peripheral devices
110, network devices 112, and interconnections 114) may be
contained in a common housing (not shown) or in any suitable
number of separate housings (not shown).

Processor packages 102 include hardware threads 16(1)-
16(M). Each hardware thread 16 in processor packages 102 is
configured to access and execute instructions stored in
memory system 104. The instructions may include a basic
input output system (BIOS) or firmware (not shown), OS 120,
a runtime platform 122, applications 124, and resource man-
agement layer 14 (also shown in FIG. 1). Each hardware
thread 16 may execute the instructions in conjunction with or
in response to information received from input/output devices
106, display devices 108, peripheral devices 110, and/or net-
work devices 112.

Computer system 100 boots and executes OS 120. OS 120
includes instructions executable by hardware threads 16 to
manage the components of computer system 100 and provide
a set of functions that allow applications 124 to access and use
the components. In one embodiment, OS 120 is the Windows
operating system. In other embodiments, OS 120 is another
operating system suitable for use with computer system 100.

Resource management layer 14 includes instructions that
are executable in conjunction with OS 120 to allocate
resources of computer system 100 including hardware

20

25

35

40

45

10
threads 16 as described above with reference to FIG. 1.
Resource management layer 14 may be included in computer
system 100 as a library of functions available to one or more
applications 124 or as an integrated part of OS 120.

Runtime platform 122 includes instructions that are
executable in conjunction with OS 120 and resource manage-
ment layer 14 to generate runtime environment 10 and pro-
vide runtime functions to applications 124. These runtime
functions include a scheduler function as described in addi-
tional detail above with reference to FIG. 1. The runtime
functions may be included in computer system 100 as part of
anapplication 124, as a library of functions available to one or
more applications 124, or as an integrated part of OS 120 and
or resource management layer 14.

Each application 124 includes instructions that are execut-
able in conjunction with OS 120, resource management layer
14, and/or runtime platform 122 to cause desired operations
to be performed by computer system 100. Each application
124 represents one or more processes, such as process 12 as
described above, that may execute with scheduler 22 as pro-
vided by runtime platform 122.

Memory system 104 includes any suitable type, number,
and configuration of volatile or non-volatile storage devices
configured to store instructions and data. The storage devices
of memory system 104 represent computer readable storage
media that store computer-executable instructions including
OS 120, resource management layer 14, runtime platform
122, and applications 124. The instructions are executable by
computer system to perform the functions and methods of OS
120, resource management layer 14, runtime platform 122,
and applications 124 described herein. Examples of storage
devices in memory system 104 include hard disk drives, ran-
dom access memory (RAM), read only memory (ROM), flash
memory drives and cards, and magnetic and optical disks.

Memory system 104 stores instructions and data received
from processor packages 102, input/output devices 106, dis-
play devices 108, peripheral devices 110, and network
devices 112. Memory system 104 provides stored instruc-
tions and data to processor packages 102, input/output
devices 106, display devices 108, peripheral devices 110, and
network devices 112.

Input/output devices 106 include any suitable type, num-
ber, and configuration of input/output devices configured to
input instructions or data from a user to computer system 100
and output instructions or data from computer system 100 to
the user. Examples of input/output devices 106 include a
keyboard, a mouse, a touchpad, a touchscreen, buttons, dials,
knobs, and switches.

Display devices 108 include any suitable type, number, and
configuration of display devices configured to output textual
and/or graphical information to a user of computer system
100. Examples of display devices 108 include a monitor, a
display screen, and a projector.

Peripheral devices 110 include any suitable type, number,
and configuration of peripheral devices configured to operate
with one or more other components in computer system 100
to perform general or specific processing functions.

Network devices 112 include any suitable type, number,
and configuration of network devices configured to allow
computer system 100 to communicate across one or more
networks (not shown). Network devices 112 may operate
according to any suitable networking protocol and/or con-
figuration to allow information to be transmitted by computer
system 100 to a network or received by computer system 100
from a network.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary

US 9,304,831 B2

11

skill in the art that a variety of alternate and/or equivalent
implementations may be substituted for the specific embodi-
ments shown and described without departing from the scope
of'the present invention. This application is intended to cover
any adaptations or variations of the specific embodiments
discussed herein. Therefore, it is intended that this invention
be limited only by the claims and the equivalents thereof.

What is claimed is:

1. A method performed by a scheduler of a process execut-
ing on a computer system, the method comprising:

detecting that a first execution context preempted and

blocked by an entity other than the scheduler in a first
critical region while executing on a processing resource
of'the scheduler, the first critical region is a set of instruc-
tions in the first execution context whose execution
becomes contingent on data corresponding to the pro-
cessing resource; and

ensuring that the first execution context resumes execution

on the processing resource in response to an indication
to the scheduler from the entity that caused the block
indicating the first execution context becoming
unblocked and without the scheduler providing any
knowledge of the preemption to the first execution con-
text.

2. The method of claim 1 further comprising:

preventing a second execution context from entering a

second critical region on the processing resource subse-
quent to the first execution context blocking and prior to
resuming execution of the first execution context, the
second critical region is a set of instructions in the sec-
ond execution context whose execution becomes con-
tingent on data corresponding to the processing
resource.

3. The method of claim 1 further comprising:

setting a critical region indicator corresponding to the first

execution context in response to the first execution con-
text entering the first critical region.

4. The method of claim 3 wherein the first execution con-
text blocks in response to a block from outside of the sched-
uler.

5. The method of claim 4 further comprising:

clearing the critical region indicator in response to the first

execution context exiting the first critical region subse-
quent to resuming the first execution context.

6. The method of claim 1 further comprising:

storing an indicator that identifies the processing resource

in response to the first execution context blocking in the
first critical region.

7. The method of claim 1 further comprising:

providing a signal to the scheduler in response to the first

execution context becoming unblocked.

8. The method of claim 1 wherein the first critical region
executes to select a second execution context for execution on
the processing resource.

9. The method of claim 1 wherein the processing resource
includes a virtual processor that maps to a hardware thread.

10. A computer readable storage medium storing com-
puter-executable instructions that, when executed by a com-
puter system, perform a method comprising:

entering a critical region of a first execution context execut-

ing on a first processing resource of a scheduler in a
process of the computer system, the critical region is a
set of instructions in the first execution context whose
execution becomes contingent on data corresponding to
the first processing resource;

setting a first indicator corresponding to the first execution

context in response to entering the critical region;

10

15

20

25

30

35

40

45

50

55

60

12

blocking in response to a preemption and block by an entity
other than the scheduler subsequent to setting the first
indicator; and
ensuring that the first execution context resumes execution
on the first processing resource in response to an indi-
cation to the scheduler from the entity that caused the
block indicating the first execution context has become
unblocked and without the scheduler providing any
knowledge of the preemption to the first execution con-
text.
11. The computer readable storage medium of claim 10, the
method further comprising:
storing a second indicator that identifies the first processing
resource in response to blocking.
12. The computer readable storage medium of claim 11, the
method further comprising:
exiting the critical region of the first execution context
subsequent to resuming execution of the first execution
context on the first processing resource; and
clearing the first indicator in response to exiting the critical
region.
13. The computer readable storage medium of claim 12, the
method further comprising:
setting the first indicator by incrementing the first indica-
tor; and
clearing the first indicator by decrementing the first indi-
cator.
14. The computer readable storage medium of claim 10, the
method further comprising:
blocking in response to the first processing resource not
being available to enter the critical region prior to enter-
ing the critical region.
15. The computer readable storage medium of claim 10, the
method further comprising:
moving to a second processing resource in response to the
first processing resource not being available to enter the
critical region.
16. A method performed by a scheduler of a process
executing on a computer system, the method comprising:
identifying a first execution context that preempted and
blocked by an entity other than the scheduler in a first
critical region while executing on a processing resource
ofthe scheduler, the first critical region is a set of instruc-
tions in the first execution context whose execution
becomes contingent on data corresponding to the pro-
cessing resource; and
resuming execution of the first execution context on the
processing resource in response to an indication to the
scheduler from the entity that caused the block indicat-
ing the first execution context has become unblocked
and without the scheduler providing any knowledge of
the preemption to the first execution context and prior to
allowing a second critical region of a second execution
context to execute on the processing resource, the sec-
ond critical region is a set of instructions in the second
execution context whose execution becomes contingent
on data corresponding to the processing resource.
17. The method of claim 16 wherein the first critical region
holds a lock.
18. The method of claim 16 wherein the first execution
context blocks in response to a page fault.
19. The method of claim 16 further comprising:
preventing the execution context from entering the second
critical region on the processing resource subsequent to
the first execution context blocking and prior to resum-
ing execution of the first execution context.

US 9,304,831 B2
13

20. The method of claim 16 wherein the processing
resource includes a virtual processor that maps to a hardware
thread.

14

